Exploring maths in the real world

Sample Student Book Pages

OYour Introduction
 Go Maths Trek

Maths Trek is a whole-school numeracy program that provides everything you and your students need to explore maths in real-world contexts.

To maximise the benefits of the program, use the Student Book with the explicit teaching resources at Maths Trek Online to build, develop and strengthen each student's ability to work mathematically.

aniths Trek oroine

Maths Trek Online is home to lesson guides, teaching slides, interactive teaching tools, videos, printable differentiation tasks and mid-term assessments.

You will also find investigation notes, Student Book answers, and preparation and planning documents at Maths Trek Online.

Maths Trek Student Book

The Student Book is packed with modelled examples, as well as teacher-guided and independent activities for every topic and problem-solving strategy.

Students will also find plenty of practice problems, revision activities, application questions and investigation pages in the Student Book.

Using the Student Book with Online

Topics

Use the online lesson guides and teaching slides to explicitly teach each topic.

Discuss any modelled examples and complete the Work together activities with your students. Then students move on to the Your turn activities for independent practice.
The Student Book is an integral part of the consolidation process. Once you have explicitly taught each concept, it is essential that students apply what they have learned to the activities.

© Revision

Use the revision activities throughout the Student Book to consolidate each student's learning and identify strengths and weaknesses.

© Problem-solving

Use the teaching slides and modelled examples in the Student
Book to teach each problem-solving strategy.
Students consolidate their skills throughout the year by independently completing practice problems. These build confidence in choosing appropriate strategies to solve a variety of unfamiliar problems.

© Oぃvesfig@アions

Investigations provide students with opportunities to apply maths concepts learned in previous weeks to unfamiliar, extended mathematical problems.
Use the online teaching notes, exemplars, videos and printable resources to introduce and guide students through each step of the investigation.

Use the online critical thinking lessons to ensure students can reflect, reason and communicate their understanding of what they have discovered.

Download the Cover sheet and use the formative assessment checklist to record each student's progress.

(Assessmen\}

Download the four mid-term assessments at Maths Trek Online to assess each student's understanding of the preceding topics. Each assessment includes graded C to A level questions.

Unit 1 1.1 Maths is everywhere
1.2 Positive and negative numbers 8
1.3 Comparing and ordering fractions 10
Unit 2 2.1 Fractions as division 12
2.2 Square numbers 14
2.3 Prime and composite numbers 16
2.4 PS strategy: Working backwards 18
Unit 3 3.1 Factor trees 20
3.2 Multiplication 22
3.3 Division 24
3.4 PS strategy: Drawing a picture 26 or diagram
Unit 4 4.1 Investigating patterns 28
4.2 Patterns in a table of values 30
4.3 Inverse operations to check calculations 32
4.4 Revision: Units 1-4 34
Unit 5 (8) Investigation: Lilja's locked level 36
Unit 6 6.1 Properties of angles 38
6.2 Renaming fractions as percentages 40
6.3 Multi-step problems - add and subtract 42
6.4 PS strategy: Making a table or chart 44
6.5 Assessment*
Unit 7 7.1 Estimation strategies 46
7.2 Metric system of measurement 48
7.3 Perimeter of rectangles 50
7.4 PS strategy: Finding a pattern or 52 using a rule
Unit 8 8.1 Area of rectangles 54
8.2 Area of composite rectangles 56
8.3 Area and perimeter 58
8.4 Revision: Units 6-8 60
Unit 9 Investigation: Happy Hippos 62

Term 2

Unit 10 10.1 Reading timetables 64
10.2 Categorical and numerical data 66
10.3 Ordinal and nominal data 68
10.4 PS strategy: Making an organised list 70
Unit 11 11.1 Side-by-side column graphs 72
11.2 Line graphs 74
11.3 Stacked line graphs 76
11.4 PS strategy: Guessing and checking 78
Unit 12 12.1 Bar charts 80
12.2 Mode and range 82
12.3 Comparing graphs 84
12.4 Revision: Units 10-12 86
Unit 13 \& \% I Investigation: Unique you 88
Unit 14 14.1 Function machines 90
14.2 Order of operations 92
14.3 Balancing equations 94
14.4 Assessment*
Unit 15 15.1 Equivalent fractions 96
15.2 Adding and subtracting fractions 98
15.3 Rounding decimals 100
15.4 PS strategy: Solving a simpler 102 problem
Unit 16 16.1 Decimal addition to tenths 104
16.2 Decimal subtraction to tenths 106
16.3 Decimal addition to hundredths 108
16.4 PS strategy: Finding smaller parts 110 of a larger problem
Unit 17 17.1 Decimal subtraction to hundredths 112
17.2 Misleading data and graphs 114
17.3 Causes of bias 116
17.4 Revision: Units 14-17 118
Unit 18 (0) Investigation: Record breaker 120

\bullet

Permo 3

Unit 19 19.1 Coordinates in one quadrant 122
19.2 Decimal multiplication 124
19.3 Decimal division 126
19.4 PS strategy: Acting out the problem 128

Unit 20 20.1 Renaming fractions as percentages 130
20.2 Discount 132
20.3 Multi-step problems 134
20.4 Problem-solving practice 136

Unit 21 21.1 Budgets 138
21.2 Reading and interpreting timetables 140
21.3 Calculating duration 142
21.4 Revision: Units 19-21 144

Unit 22 AT Investigation: Fantasy flight 146
Unit 23 23.1 Cross-sections 148
23.2 Measuring with tonnes and kilograms 150
23.3 Inverse operations to solve problems 152
23.4 Assessment*

Unit 24 24.1 Adding and subtracting fractions 154
24.2 Properties of shapes 156
24.3 Tessellations 158
24.4 Problem-solving practice 160

Unit 25 25.1 Decimal addition to thousandths 162
25.2 Decimal subtraction to thousandths 164
25.3 Multiply decimals by 10, 100, 1000166
25.

Want more investigations?

Unit 2626.
You'll find extra investigations at Maths Trek Online - a great way to round off a year of maths!

Unit 27 Investigation: Is petrol pricey? 178

Planning made easy

Maths Trek guides you and your students through a sequence of topics, problem-solving, revision and investigations. As the year progresses, your students consolidate their learning and revisit concepts. They also have ample opportunity to apply what they've learned to unfamiliar, extended maths problems.
You'll find four assessments in the yearly plan too - one for each term. They assess each student's understanding of the preceding topics and are available to print at Maths Trek Online.

Unit 30 30.1 Repeated probability experiments 196
30.2 Discrete and continuous data 198
30.3 Transformations 200
30.4 Revision: Units 28-30 202

Unit 31 Investigation: Practice makes 204 perfect

Unit 32 32.1 Positive and negative numbers 206
32.2 Coordinates in four quadrants 208
32.3 Transformations with coordinates 210
32.4 Assessment*

Unit 33 (2. Investigation: Curious coordinates 212
Unit 34 , Maths puzzles and games
214

Extra investigations

Why not conclude the year with an extra investigation? Teachers can log in to Maths Trek Online to access the printable pages and resources.

Investigation: Clever containers
Investigation: Educational entrepreneur
Investigation: Octi-origami
Investigation: Weird or wonderful weather

[^0]
0 บ. 1

 Mathos is everywhere

 Mathos is everywhere}

Cover hoous

Look at the front cover of your book. Count the number of objects you can see in Earth's orbit, then write the totals.

Count of objects in orbit	
Object	Total
(b) Astronaut	
Space rock	

Use the data from the table to complete the dot plot.

Satellite	Space station	Astronaut	Space rock
		Object	

A fooiball field of solar panelsb

The International Space Station is powered by eight massive solar arrays. If all eight solar arrays were placed on a rugby league field, what fraction of the field would they cover? Write your answer in twentieths.

solar array

These stars form a mystery constellation. Colour each star and connect them as you go.

```
Work
down the
START
    (3,3) (4,6)
    (5,5) (2,5)
    (6,7) (1, 3)
    (8,9) STOP
    (10, 9)
```

Meisor shower

During a meteor shower, you saw three shooting stars in two minutes. Predict how many shooting stars you will see in one hour.

Speedy satiellites

A satellite orbiting Earth can travel 410 km every minute!
How far will it travel in 5 minutes?

Time (minutes)	1	2	3		
Distance travelled (kilometres)	410				

shooting stars

ข.2 Positive and negarive numbers

Work togeither

(0) Label the number line from -5 to +5 .

(2) Use the number line in question (1) to count the jumps between each pair.
a -1 to -2

b -3 to 0

c +5 to -4

d 0 to +2
e +3 to -4

f -1 to +1

g

h +5 to -5

j -2 to +2

Your furn

Colour the bubble to show the larger number in each pair.a \bigcirc-3
+3
b $\begin{aligned} & -5 \\ & +3\end{aligned}$
c \bigcirc_{-4}^{+1}
d) $\begin{array}{r}\text { +2 } \\ -5\end{array}$
e $\bigcirc_{\bigcirc}^{-2} \begin{aligned} & -1\end{aligned}$
f \bigotimes_{-1}^{+1}
g $\bigcirc^{-5}+5$
h \bigcirc_{-5}^{-4}
i $\bigcirc-3$
j \bigcirc_{-1}^{0}

Use the Seabreeze Apartments lift panel to answer the questions.
a Jin parks at -2 . She lives on the 5th floor. How many floors does she travel?

Seabreeze Apartments

(5) Apartments 501-504
(4) Apartments 401-404
(3) Apartments 301-304
(2) Apartments 201-204
(1) Apartments 101-104
(0) Ground floor
(-1) Car park
(-2) Car park
(-3) Car park
(4) \triangle - 14
(5) Write the Australian capital cities in order from hottest to coldest. Match each city to its temperature on the thermometer. The first one is done for you.

$70+$ topics in every year

From number and measurement to space and statistics, your students complete a wide variety of activities to apply what they've learned in the lesson.

Key topics are revisited throughout the year to consolidate learning.

(6)

Riddle time: Use the thermometer in question (5) to find the city in each pair with the colder temperature. To solve the riddle, write the matching letters in the boxes below. The first one is done for you.

The more you make, the more you leave behind. What are they?

a	b	c	d	e	f	g	h	i
F								

(7) Use the map and the thermometer in question (5) to work out the temperatures of the capital cities if the temperature dropped by $5^{\circ} \mathrm{C}$.
a Perth
$\begin{array}{cc}\text { b Melbourne } & \text { c Hobart } \\ \square & \square\end{array}$
$\begin{array}{cc}\text { d Canberra } & \text { e Adelaide } \\ \square\end{array}$

Beminder

To abbreviate 10 degrees Celsius, write $10^{\circ} \mathrm{C}$.

Chollenge

What is the difference in temperatures between each pair of cities in question (6)?

What is the greatest difference in temperatures between any pair of cities? \square

Work togeither

(0) Complete the table of values to the 5th term and describe the pattern using a rule based on the previous term. Then complete the table to the 10th term.

Reminder

Patterns can be described using a rule based on the previous term. Look across the table of values to work out the gap from one number to the next. For example, $8,14,20,26,32$
\longrightarrow

Term (T)	1	2	3	4	5	6	7	8	9	10
Number of matchsticks (M)										

Rule based on the previous term \square

Yous furn

For each pattern, complete the table of values to the 5th term and describe the pattern using a rule based on the previous term. Then complete the table to the 10th term.
a

Term (T)	1	2	3	4	5	6	7	8	9	10
Number of cubes (C)										

Rule based on the previous term \square

b

Term (T)	1	2	3	4	5	6	7	8	9	10
Number of matchsticks (M)										

Rule based on the previous term \square

P

Term (T)	1	2	3	4	5	6	7	8	9	10
Number of triangles (N)										

Rule based on the previous term \square
d

Term (T)	1	2	3	4	5	6	7	8	9	10
Number of cubes (C)										

Rule based on the previous term

e \square \square

Term (T)	1	2	3	4	5	6	7	8	9	10
Number of matchsticks (M)										

Rule based on the previous term

(3)

Complete the table of values for the stack of glasses to the 5th term and describe the pattern using a rule based on the previous term. Then complete the table to the 10th term.

Term (T)	1	2	3	4	5	6	7	8	9	10
Height of stack in mm (H)										

Rule based on the previous term \square

Challenge

City Mall Car Park charges $\$ 5.45$ for the first $\frac{1}{2}$ hour, $\$ 6.85$ for the first hour and $\$ 8.25$ for $1 \frac{1}{2}$ hours. Design a table to display the charges for parking from $\frac{1}{2}$ hour to 5 hours.

City Mall Car Park Fees
$\frac{1}{2}$ hour \$... 1 hour \$...
(0) Label the number line from -5 to +5 .

(2) Use the number line in question (1) to count the jumps between each pair.
a - 1 to +2

b -5 to +5

c -3 to +4

d +5 to -1

e +1 to - 3
(3) Mark the fractions on the number lines. Circle the larger fraction in each pair.
a

b

(4) Complete the table.

We say	We write		Answer
a	one third of 21	or $\frac{21}{3}$ or	
b		$\frac{1}{6}$ of 30 or or $30 \div 6$	
c	one fifth of 40	or or $40 \div 5$	

(5) Calculate the square numbers.
d $20^{2}=\square$
b $10^{2}=$ \qquad
c $7^{2}=$

$$
\text { e } 90^{2}=\square
$$

$$
\text { f } 80^{2}=\square
$$

g $300^{2}=\square$
h $600^{2}=$ \square
i $400^{2}=\square$
(6) Colour the bubble to show if the number is prime or composite.
a

- 22
\bigcirc prime
b 96
c 7
prime
© composite
Prime \bigcirc composite
d 30
\bigcirc prime © composite
e (o)
\bigcirc prime
© composite
(7) Draw factor trees, then circle and write the prime factors.
a
$50=$ \square
b $\quad 24$ Regular revision
Every 4-5 weeks, your students complete revision activities based on the preceding topics. This regular revision is great for consolidating learning and identifying each student's strengths and weaknesses.
(8) Complete the multiplications and division.
a 9612×6

b 1946×31

c $577 \div 4$

(9) Use a calculator to find the first five answers, then predict the last one.

(10) Complete the table of values to the 5th term and describe the pattern using a rule based on the previous term. Then complete the table to the 10th term.

Term (T)	1	2	3	4	5	6	7	8	9	10
Number of matchsticks (M)										

Rule based on the previous term \square
(10) Write the inverse of the equations, then work out the unknown. The first one is done for you.
$a(\Delta+8) \div 2=10 \quad(10 \times 2)-8=\Delta=12$
b $(\Delta-30) \times 6=18 \Rightarrow$ \square

The Global Wildlife Foundation (GWF) is going to establish an animal-friendly safari park and you get to design it!

A 50000 square metre wildlife reserve has been set aside for hippos, elephants, giraffes, lions and tortoises. The size of all animal enclosures must comply with GWF guidelines.

Investigate the best way to use these guidelines to plan your animal enclosures. Also, think about what other special features your park design could include.

Prove to the GWF that each enclosure has adequate space for the number of animals.

Use what you learned in these topics to complete the investigation.
Unit 3.2 Multiplication... 22
Unit 3.3 Division p 24
Unit 6.3 Multi-step problems - add and subtract p 42
Unit 7.1 Estimation strategies. p 46

Unit 7.2 Metric system of measurement. p 48
Unit 7.3 Perimeter of rectangles p 50
Unit 8.1 Area of rectangles p 54
Unit 8.2 Area of composite rectangles p 56
Unit 8.3 Area and perimeter.. 58

At the end of this investigation you will need to submit:

- Cover sheet ㅊ
- Safari park calculation tables N
- Grid paper (with park design

Docestionation steps

Discuss features and facilities

Discuss the features of zoos or safari parks you may have seen or visited. What animals and facilities did they have? List the features and facilities you might like to include in your own safari park.

(2) Select animal numbers

Look at the information on your Safari park calculation tables n. Decide how many animals to put into each enclosure and choose your features and facilities. All enclosures, features and facilities must fit within the confines of the 50000 square metres (5 hectares).

Find the total area required for each animal enclosure, feature and facility, and record it in the tables.

Calculate the number of grid squares needed to represent each
 square represents 100 square metres.

(3) Design the park

Use the Grid paper that represents the 50000 squa metre site for your park design. Try to maximise the use c available space.

Draw and label all the animal enclosures, features and fo including their areas in square metres. These might be sc rectangles or composite shapes.

Bring maths to life

Every Student Book features up to eight investigations. Designed to be conducted over a week, each investigation is packed with opportunities for your students to apply their maths skills to unfamiliar, extended problems.
(4) Compare designs

Swap safari park designs with a classmate. Discuss the area and positions of enclosures. Check the accuracy of the calculations.

Does the number of animals in each enclosure comply with the minimum area required?

Make a class display of the safari park designs.

(5) Critical thinking

Justify the area of your giraffe enclosure.
Evaluate your design and offer one improvement.

Develop critical thinking skills

Critical thinking is an essential step in every investigation. At Maths Trek Online you'll find critical thinking lessons, cognitive verb definitions, examples and hints - all designed to help your students craft well-reasoned responses to critical thinking questions.

Inguiry

Use a digital program that shows a 3D representation of the Earth to find your school. Use the measuring tool and estimate the entire area of your school grounds.

Drewing e pisfure or diegrem

Work together

Problem

Julia is taking her Nan to her surprise birthday party at a restaurant in town. Julia lives 14.5 km from the restaurant, and Nan lives 9.5 km from the restaurant in the opposite direction. Julia will drive from her home to Nan's house to pick her up and take her to the restaurant. After the party, Julia will drive Nan home before driving home herself.

How many kilometres will Julia drive?

Unpacking the problem

a What is the problem asking us to do?calculate the distance from Julia's house to Nan's housecalculate the total distance Julia will drivework out how many candles Nan will have on her cake

b Underline the important information in the problem.
c Write, jot, draw or discuss what you know about the problem.
Discuss how this helps us draw a picture or diagram to solve the problem.

Solving the problem

a Complete the diagram by drawing Julia's house and Nan's house, and labelling the known distances.

b Draw arrows on the diagram to indicate Julia's journey.
c Calculate the total distance Julia will drive.

d Complete the statement.
Julia will drive a total of \square

Your furn

problem A

Riley lives 8.2 km from the surf club. The pier is 7.5 km fro To train for an upcoming cycling event, Riley rides from hc After this, Riley rides back to the pier and then rides hom

How many kilometres does Riley cycle in his training loor

Nine problem-solving strategies

Use the online teaching resources and scaffolded Work together problem to explicitly teach each strategy. Then give your students independent practice at applying the strategy as they complete the Your turn problems.

Problem B

Every day from Monday to Friday, Pop walks from his house to the post office to check his post office box. Pop always stops at the lake, which is 400 m west of his house, along the way. The post office is 300 m south of the lake.

On Friday Pop took a parcel to the post office. When he realised he had left the parcel at the lake, he walked back to the lake to retrieve the parcel before returning to the post office to send it.

If Pop always walks directly from the post office back to his house, which is
 500 m away in a straight line, how far did he walk this week?

Pop walked \square (or \square

Problem A

Marnie built a pyramid with 4 layers using cubes.
Then she built a second pyramid with 6 layers using the same pattern.
How many cubes are in Marnie's second pyramid?

There are \square cubes in Marnie's second pyramid.

Think critically

a How did you solve the problem? Tick the strategy or strategies you used.Guessing and checkingActing out the problemSolving a simpler problemDrawing a picture or diagram
\square Making an organised listMaking a table or chartFinding smaller parts of a larger problemWorking backwardsFinding a pattern or using a rule
b What if Marnie's second pyramid had 8 layers instead of 6 ?
How would the answer change?

Problem B

Anton has a set of domino tiles. The number of dots on each end of a tile ranges from 0 to 6 . Every tile in Anton's set has a different combination of dots.
If all possible dot combinations are included, how many domino tiles are in Anton's set?

Plenty of problem-solving practice

As the year progresses, your students practise choosing appropriate problem-solving strategies to solve a variety of unfamiliar problems.

There are \square domino tiles in Anton's set.

Think critically

a How did you solve the problem? Tick the strategy orGuessing and checkingActing out the problemSolving a simpler problemDrawing a picture or diagramMaking an oMaking a takFinding smaller parts of a larger problemWorking backwardsFinding a pattern or using a rule
b What if the number of dots on each end of a domino tile ranged from 0 to 9 ? Is there an efficient way to work out how many tiles Anton's set would contain?

OThe Moshs Trek Program

Maths Trek is a whole-school numeracy program for Foundation to Year 6 that develops mathematical understanding, fluency, reasoning and problem-solving skills.
The Student Book together with the explicit teaching resources at Maths Trek Online build, develop and strengthen each student's ability to work mathematically.
Use the comprehensive online teaching resources to explicitly teach each concept before students apply their learning in the Student Book.

On finc sivdens Book ทov wiol find .o.

- shared Work together activities
- modelled examples
- independent activities to develop and master maths skills
- concepts revisited throughout the year
- scaffolded problems to learn key problem-solving strategies
- practice problems to build confidence in applying the strategies
- real-world investigations where students apply maths skills to unfamiliar, extended mathematical problems to strengthen connections between concepts
- regular revision to consolidate learning

AB Maits Trek Online

- explicit teaching slides and lesson guides for every topic
- differentiation tasks
- interactive teaching tools
- investigation videos
- digital and printable resources to guide students through every investigation
- critical thinking lessons in every investigation
- mid-term assessments
- access to teaching resources for all year levels

- view Maths Trek sample pages from other year levels
- download the curriculum match and yearly plan documents
- check out the full Maths Trek product range
- book a meeting with your local education consultant to learn about Maths Trek.

[^0]: * Log in to Maths Trek Online to download and print assessments.

